3. Критика больцмановской интерпретации

Возражения против теории Больцмана появились сразу же после выхода его основной работы в 1872 г. Действительно ли Больцману удалось «вывести» необратимость из динамики? Каким образом обратимые законы движения по траекториям могут порождать необратимую эволюцию? Не противоречит ли кинетическое уравнение Больцмана динамике? Нетрудно видеть, что симметрия уравнения Больцмана не согласуется с симметрией классической механики.

Мы уже видели, что в классической динамике обращение скорости (v—v) приводит к такому же результату, как и обращение времени (t→—t). Это — основная симметрия классической динамики, и можно было бы надеяться, что кинетическое уравнение Больцмана, описывающее, как изменяется во времени функция распределения, обладает такой же симметрией. Но в действительности все обстоит иначе: вычисленный Больцманом столкновительный член инвариантен относительно обращения скорости. Эта несколько неожиданная инвариантность имеет простой физический смысл: в больцмановской картине нет никакого различия между столкновением, обращенным в будущее, и столкновением, обращенным в прошлое. Именно на этой идее основано возражение Пуанкаре против вывода уравнения Больцмана, предложенного самим Больцманом. Правильные вычисления не могут приводить к заключениям, противоречащим исходным допущениям[208],[209]. Но, как мы видели, симметрия кинетического уравнения, выведенного Больцманом для функции распределения, противоречит симметрии классической динамики. Следовательно, заключает Пуанкаре, Больцман не сумел «вывести» энтропию из динамики. Где-то в своих рассуждениях он ввел нечто новое, чуждое динамике. Следовательно, выведенное Больцманом уравнение в лучшем случае может рассматриваться лишь как феноменологическая модель, полезная, но не имеющая прямого отношения к динамике. Таково было также возражение Цермело (1896), выдвинутое против теории Больцмана.

С другой стороны, возражение Лошмидта (1876) позволило установить границы применимости кинетической модели Больцмана. Лошмидт заметил, что модель Больцмана перестает выполняться после обращения скоростей, соответствующего преобразованию v→—v.

Поясним суть возражения Лошмидта с помощью мысленного эксперимента. Предположим, что газ находится сначала в неравновесном состоянии и эволюционирует до момента времени t0. В момент времени t0 обратим все скорости. Тогда система вернется в начальное состояние. Следовательно, больцмановская энтропия при t=0 и t=2t0 должна быть одинакова.

Число таких мысленных экспериментов легко можно было бы приумножить. Предположим, что при t=0 у нас имеется смесь водорода и кислорода. Через какое-то время образуется вода. Если обратить все скорости, то смесь вернется в исходное состояние: вода исчезнет, останутся только водород и кислород.

Интересно, что в лаборатории или в численном моделировании обращение скоростей — вполне выполнимая операция. Например, на рис. 26 и 27 H-функция Больцмана вычислена для двухмерных твердых сфер (дисков). В начальный момент времени диски располагаются в узлах квадратной решетки с изотропным распределением скоростей. Результаты вычислений совпадают с предсказаниями Больцмана.

Изображение к книге Порядок из хаоса

Рис. 26. Эволюция H со временем для N «твердых шаров» (численное моделирование): a) N=100, b) N=484, с) N=1225.


Если через пятьдесят или сто столкновений (в разреженном газе это соответствует 10-6с) обратить скорости, то получается новый ансамбль[210]. После обращения скоростей H-функция Больцмана уже не убывает, а возрастает.

Аналогичная ситуация возникает при определенных условиях в реальных экспериментах со спиновым эхом и эхом в плазме: на ограниченных интервалах времени наблюдается «антитермодинамическое», в смысле Больцмана, поведение системы.

Важно отметить, что эксперимент по обращению скоростей тем труднее, чем позже происходит обращение скоростей (т. е. чем больше время t0).

Восстановить свое прошлое газ может лишь в том случае, если он «помнит» все, что с ним произошло в интервале времени от t=0 до t=t0. Для этого необходимо какое-то «хранилище» информации. В роли такого хранилища, или памяти, выступают корреляции между частицами. К вопросу о корреляциях мы вернемся в гл. 9. Пока же заметим, что именно это соотношение между корреляциями и столкновениями было недостающим звеном в рассуждениях Больцмана. Когда Лошмидт в полемике с Больцманом указал на это обстоятельство, Больцман вынужден был признать правоту своего оппонента: обратные столкновения «ликвидируют последствия» прямых столкновений и система должна возвращаться в начальное состояние. Следовательно, H-функция должна возрастать от конечного значения к начальному. Таким образом, обращение скоростей требует проведения различия между ситуациями, к которым рассуждения Больцмана применимы, и ситуациями, в которых те же рассуждения неверны.

Изображение к книге Порядок из хаоса

Рис. 27. Эволюция H при обращении скоростей после 50 и 100 соударений. Численное моделирование для 100 «твердых шаров».


После того как эта проблема была поставлена (1894), выяснить природу ограничения оказалось. совсем не трудно[211],[212]. Применимость статистического подхода Больцмана зависит от предположения о том, что перед столкновением молекулы ведут себя независимо друг от друга. Это предположение относительно начального состояния газа известно под названием гипотезы молекулярного хаоса. Начальное состояние, возникающее в результате обращения скоростей, не удовлетворяет гипотезе молекулярного хаоса. Если систему заставить эволюционировать «вспять во времени», то создается новая ситуация, аномальная в том смысле, что некоторым молекулам, сколь бы далеко друг от друга они ни находились в момент обращения скоростей, предопределено встретиться в заранее установленный момент времени и подвергнуться заранее установленному преобразованию скоростей.

Обращение скоростей порождает высокоорганизованную систему, и гипотеза молекулярного хаоса перестает выполняться. Различные столкновения, как бы под влиянием предустановленной гармонии, порождают поведение газа, которое внешне вполне «целенаправленно».

Но это еще не все. Что означает переход от порядка к хаосу? В предложенной Эренфестами модели урн ответ ясен: система эволюционирует до тех пор, пока распределение шаров не становится равномерным. В других случаях ситуация не столь проста. Мы можем воспользоваться численным моделированием и начать со случайного распределения взаимодействующих частиц. Со временем (на какое-то мгновение) может образоваться правильная решетка. Происходит ли в этом случае переход от порядка к хаосу? Ответ на этот вопрос далеко не очевиден. Для того чтобы понять порядок и хаос, нам необходимо прежде всего определить те объекты, к которым мы применяем эти понятия. Переход от динамики к термодинамике, как показал Больцман, совершается особенно легко в разреженных газах. Но в плотных системах, где молекулы взаимодействуют между собой, переход этот не столь очевиден.

Именно из-за трудностей, возникающих при рассмотрении плотных систем с взаимодействующими частицами, яркая пионерская теория Больцмана осталась незавершенной.


4. Динамика и термодинамика — два различных мира

Мы уже упоминали о том, что траектории несовместимы с понятием необратимости. Но поведение траекторий — отнюдь не единственный язык, на котором мы можем сформулировать динамику. В качестве альтернативы сошлемся на теорию ансамблей, развитую Гиббсом и Эйнштейном[213] и представляющую особый интерес при изучении систем, состоящих из большого числа молекул. Существенно новым элементом в теории ансамблей Гиббса—Эйнштейна явилась возможность сформулировать динамическую теорию независимо от точного задания каких бы то ни было начальных условий.

В теории ансамблей физические системы рассматриваются в фазовом пространстве. Динамическое состояние точечной частицы (материальной точки) определяется ее положением (вектором с тремя компонентами) и импульсом (тоже вектором с тремя компонентами). Такое состояние можно представить двумя точками (каждая из которых принадлежит «своему» трехмерному пространству) или одной точкой в шестимерном пространстве координат и импульсов. Это и есть фазовое пространство. Геометрическое представление динамических состояний одной точечной частицы обобщается на случай произвольной системы п частиц. Для того чтобы задать состояние такой системы, необходимо указать nr6 чисел, или точку в 6n-мерном фазовом пространстве. Эволюции во времени системы п частиц будет соответствовать траектория в фазовом пространстве.