Клаузиусу удалось найти количественное выражение для потока энтропии deS через тепло, поглощаемое (или отдаваемое) системой. В мире, где безраздельно господствуют понятия обратимости и сохранения, вывод такой зависимости имел первостепенное значение. Что же касается необратимых процессов, участвующих в производстве энтропии, то Клаузиус смог установить лишь неравенство diS/dt>0. Но и оно было важным шагом вперед, поскольку позволяло проводить различие между потоком энтропии и производством энтропии не только для цикла Карно, но и для других термодинамических систем. Для изолированной системы, которая ничем не обменивается с окружающей средой, поток энтропии, по определению, равен нулю. Остается лишь член, описывающий производство энтропии, а энтропия системы может только возрастать или оставаться постоянной. В этом случае сам собой отпадает вопрос о необратимых изменениях, рассматриваемых как приближение к обратимым изменениям: возрастающая энтропия соответствует самопроизвольной, эволюции системы. Энтропия становится, таким образом, «показателем эволюции», или, по меткому выражению Эддингтона, «стрелой времени». Для изолированных систем будущее всегда расположено в направлении возрастания энтропии.
Какая система может быть изолирована лучше, чем наша Вселенная? Эта идея легла в основу космологической формулировки первого и второго начал термодинамики, предложенной Клаузиусом в 1865 г.:
Die Energie der Welt ist konstant.
Утверждение о том, что энтропия изолированной системы возрастает до максимального значения, выходит за рамки той технологической проблемы, решение которой привело к созданию термодинамики. Возрастающая энтропия перестает быть синонимом потерь. Теперь она относится к естественным процессам внутри системы. Под влиянием этих процессов система переходит в термодинамическое «равновесие», соответствующее состоянию с максимумом энтропии.
В главе 1 мы отмечали элемент некоторой неожиданности в открытии Ньютоном универсальных законов динамики. Когда Сади Карно сформулировал свои законы для идеальных тепловых машин, он не мог даже вообразить, что его работа приведет к концептуальной революции в физике.
Обратимые преобразования принадлежат классической науке в том смысле, что определяют возможность воздействия на систему, управления системой. Динамическим объектом можно управлять, варьируя начальные условия. Аналогичным образом термодинамическим объектом, определяемым в терминах обратимых преобразований, можно управлять, изменяя граничные условия: любая система, находящаяся в состоянии термодинамического равновесия, при постепенном изменении температуры, объема или давления проходит через серию равновесных состояний и при любом обращении производимых над ней манипуляций возвращается в начальное состояние. Обратимый характер таких изменений и управление объектом через граничные условия— процессы взаимозависимые. С этой точки зрения необратимость «отрицательна»: она проявляется в форме неуправляемых изменений, происходящих в тех случаях, когда система выходит из-под контроля. Наоборот, необратимые процессы можно рассматривать как последние остатки самопроизвольной внутренней активности, проявляемой природой, когда человек с помощью экспериментальных устройств пытается обуздать ее.
Таким образом, «отрицательное» свойство — диссипация — показывает, что в отличие от динамических объектов термодинамические объекты управляемы не до конца. Иногда они «выходят из повиновения», претерпевая самопроизвольное изменение.
Для термодинамической системы все изменения не эквивалентны. В этом и состоит физический смысл разложения dS=deS+diS. Самопроизвольное изменение diS, направленное к равновесию, отличается от изменения deS, определяемого и управляемого варьированием граничных условий (например, температуры окружающей среды). В случае изолированной системы равновесие выступает в роли притягивающего множества, или «аттрактора», неравновесных состояний. Следовательно, наше первоначальное утверждение допускает обобщение: эволюция к состоянию-аттрактору отличается от всех других изменений, в особенности от изменений, обусловленных варьированием граничных условий.
Макс Планк часто подчеркивал различие между двумя типами изменений, встречающихся в природе. Природа, писал Планк, по-видимому, отдает «предпочтение» определенным состояниям. Необратимое увеличение энтропии diS/dt описывает приближение системы к состоянию, неодолимо «притягивающему» ее, предпочитаемому ей перед другими, — состоянию, из которого система не выйдет по «доброй воле».
«Согласно этому способу выражения, в природе невозможны те процессы, при которых природа дает меньшее предпочтение конечному состоянию, чем начальному. Предельный случай представляет обратимые процессы; в них природа испытывает одинаковое предпочтение как к начальному, так и к конечному состоянию, и поэтому переход из одного состояния в другое может происходить в обоих направлениях»[137].
Сколь чуждым выглядит такой язык по сравнению с языком динамики! В динамике система изменяется вдоль заданной раз и навсегда траектории, не забывая начальную точку (так как начальные условия определяют всю траекторию при любых значениях времени). В случае же изолированной системы все неравновесные ситуации порождают эволюцию к равновесному состоянию одного и того же типа. К моменту достижения равновесия система забывает свои начальные условия, т. е. способ, которым она была приготовлена.
Удельная теплоемкость или сжимаемость системы, находящейся в состоянии термодинамического равновесия, являются свойствами, не зависящими от того, как была построена система. Это счастливое обстоятельство значительно упрощает исследование физических состояний вещества. Действительно, сложные системы состоят из огромного числа частиц[138]. С точки зрения динамики воспроизвести любое состояние такой системы невозможно из-за бесконечного разнообразия состояний, в которых она может находиться.
Мы сталкиваемся, таким образом, с двумя принципиально различными описаниями: динамикой, применимой к миру движения, и термодинамикой, наукой о сложных системах, наделенных внутренней способностью эволюционировать в сторону увеличения энтропии. Столь резкая противоположность двух описаний немедленно порождает вопрос о том, какая взаимосвязь существует между ними. Эта проблема дискутируется в науке с тех пор, как были сформулированы начала термодинамики.
Второе начало термодинамики содержит два принципиально важных элемента: 1) «негативный», выражающий запрет на некоторые процессы, т. е. их невозможность (тепло может распространяться от горячего источника к холодному, но не от холодильника к нагревателю); 2) «положительный», конструктивный. Второй элемент является следствием первого: запрет на некоторые процессы позволяет нам ввести функцию (энтропию), монотонно возрастающую для изолированных систем. Энтропия ведет себя как аттрактор для изолированных систем.
Каким образом положения термодинамики можно было бы совместить с динамикой? В конце XIX в. большинство ученых, по всей видимости, склонны были думать, что термодинамика несовместима с динамикой. Принципы термодинамики были новыми законами, закладывающими фундамент новой науки, не сводимой к традиционной физике. Качественное многообразие энергии и присущую ей тенденцию к диссипации приходилось принимать как новые аксиомы. Таким был аргумент, выдвигаемый «энергетистами» в противовес «атомистам», упорно не желавшим отказаться от выполнения программы, в которой они усматривали высшую миссию физики — сведение сложности явлений природы к простоте поведения элементарных структурных единиц, выражаемого законами движения.
Проблемы перехода от микроскопического уровня к макроскопическому оказались необычайно плодотворными для физики в целом. Первым вызов принял Больцман. Тонкая физическая интуиция подсказывала ему, что необходимо выработать какие-то новые понятия, которые позволили бы обобщить физику траекторий, распространив ее на системы, описываемые термодинамикой. Следуя по стопам Максвелла, Больцман принялся искать концептуальные новации в теории вероятности.
В самой идее о том, что вероятность могла бы играть определенную роль в описании сложных явлений, ничего удивительного не было: у Максвелла она, по-видимому, зародилась под влиянием трудов Кетле, который первым ввел в социологию понятие «среднего» человека. Новацией было введение вероятности в физику не как средства аппроксимации, а как объясняющего принципа, использование ее для демонстрации нового типа поведения систем, состоящих из огромного числа частиц: наличие большой популяции позволяло применять правила теории вероятностей.