4. От технологии к космологии

Как мы уже знаем, вопрос, поднятый Карно и Клаузиусом, привел к теории идеальных тепловых машин, основанной на сохранении энергии и компенсации. Кроме того, стало возможным ставить (и решать) новые проблемы, такие, как диссипация энергии. Уильям Томсон, питавший глубочайшее уважение к работе Фурье, быстро осознал важность этой проблемы и в 1852 г. первым сформулировал второе начало термодинамики.

На теплопроводность, математическую теорию которой построил Фурье, Карно указал как на возможную причину энергетических потерь в тепловом двигателе. Так цикл Карно, уже более не идеальный, а «реальный», стал точкой конвергенции двух универсалий, открытых в XIX в.: превращения энергии и теплопроводности. Сочетание этих двух открытий привело Томсона к формулировке его нового принципа: существования в природе универсальной тенденции к деградации механической энергии. Обращаем особое внимание на слово «универсальная», перекликающееся со словом «универсум», т. е. весь мир, или Вселенная.

Мир Лапласа был идеальным вечным двигателем. Начиная с Томсона, космология перестает быть только отражением нового идеального теплового двигателя, но и включает последствии необратимого распространения тепла в мире, в котором энергия сохраняется. Этот мир космология Томсопа описывала как машину, в которой тепло превращается в движение лишь ценой определенных необратимых потерь и бесполезной диссипации. Соответственно уменьшились различия в природе, способные производить механический эффект. Мир использует эти различия при переходе от одного превращения к другому и стремится к конечному состоянию теплового равновесия — «тепловой смерти». В соответствии с законом Фурье при достижении миром конечного состояния исчезнут всякие различия в температуре, способные производить механический эффект.

Томсон совершил головокружительный прыжок от технологии тепловой машины к космологии. В своей формулировке второго начала термодинамики он использовал научную терминологию середины XIX в.: «сохранение энергии», «тепловой двигатель», «закон Фурье». Немаловажную роль сыграла и культурная среда, в которой было совершено открытие. Общепризнано, что в XIX в. проблема времени приобрела новое значение. Существенную роль времени начали отмечать во всех областях: в геологии, биологии, языкознании, социологии и этике. Вместе с тем интересно отметить, что та специфическая форма, в которой время вошло в физику, именно как тенденция к однородности и смерти, в большей мере напоминает о древних мифологических и религиозных архетипах, чем о все нарастающем усложнении и многообразии, описываемыми биологией и социальными науками. Возвращение этих древних тем можно рассматривать как культурный отзвук социальных и экономических сдвигов времени. Быстрая трансформация технологического способа взаимодействия с природой, постоянно нарастающий темп изменения, с которым столкнулся XIX век, не могли не вызвать тревогу. Это беспокойство не оставляет и нас и принимает самые различные формы в виде повторяющихся призывов к «нулевому росту» общества или к мораторию на научные исследования до провозглашения «научных истин» относительно нашего распадающегося мира. Современные знания в области астрофизики все еще остаются скудными и во многом проблематичными. Трудность продвижения в этой области физики отчасти обусловлена тем, что в астрофизике гравитационные эффекты играют существенную роль и проблемы требуют одновременного использования термодинамики и теории относительности. Тем не менее большинство работ в этой области с удивительным единодушием предсказывает грядущую катастрофу... Одна из последних книг на эту тему рисует такую картину:

«Неприятная истина состоит, по-видимому, в том, что неумолимый распад нашей Вселенной, насколько мы можем судить, неизбежен; организация, охватывающая всякую упорядоченную деятельность от людей до галактик, медленно, но неизбежно деградирует и может даже кануть в небытие в результате всеобщего гравитационного коллапса»[129].

Другие более оптимистичны. В превосходной научно-популярной статье об энергии Вселенной Фримен Дайсон пишет следующее:

«Вполне возможно, однако, что жизнь играет более важную роль, чем принято думать. Возможно, что жизни суждено выстоять против всех невзгод, преобразуя мир для собственных целей. И структура неодушевленного мира может оказаться не столь уж далекой от потенциальностей жизни и разума, как имеют обыкновение полагать ученые XX в.»[130]

Несмотря на существенный прогресс, достигнутый Хокингом и другими исследователями[131], наше знание крупномасштабных преобразований во Вселенной все еще остается неадекватным.


5. Рождение энтропии

В 1865 г. настал черед совершить скачок от технологии к космологии для Клаузиуса. Сначала он лишь переформулировал свои более ранние выводы, но при этом ввел новое понятие — энтропия. Первоначально Клаузиус намеревался четко разграничить понятия сохранения и обратимости. В отличие от механических превращений, для которых обратимость и сохранение совпадают, при физико-химическом превращении энергия может сохраняться даже в том случае, если преобразование необратимо. Это, в частности, относится к трению, когда движение превращается в тепло, или к теплопроводности, описанной Фурье.

Мы уже знакомы с таким понятием, как «энергия». Она является функцией состояния системы, т. е. функцией, зависящей только от значений параметров (давления, объема, температуры) , которые однозначно определяют состояние[132]. Но нам необходимо выйти за рамки закона сохранения энергии и найти способ, позволяющий выразить различие между «полезными» обменами энергией в цикле Карно и «диссипированной» энергией, теряемой необратимо.

Именно такую возможность и предоставляет введенная Клаузиусом новая функция, получившая название «энтропия» и обычно обозначаемая буквой S.

Клаузиус, по-видимому, намеревался лишь записать в новом виде очевидное требование, состоящее в том, что в конце цикла тепловая машина должна возвращаться в начальное состояние. В первом определении энтропии основной акцент делался на сохранении: в конце каждого цикла, идеального или с потерями, функция состояния системы — энтропия — возвращается к своему начальному значению. Но параллель между энтропией и энергией заканчивается, стоит лишь нам отказаться от принятых идеализаций[133]

Рассмотрим приращение энтропии dS за короткий интервал времени dt. В случае идеальной и реальной тепловой машины ситуация совершенно различная. В первом случае dS можно полностью выразить через теплообмен между машиной и окружающей средой. Можно поставить специальные опыты, в которых система будет отдавать тепло вместо того, чтобы поглощать его. Соответствующее приращение энтропии при этом лишь изменит знак. Такую составляющую полного приращения энтропии мы обозначим deS. Она обратима в том смысле, что может быть и положительной, и отрицательной. В реальных машинах мы сталкиваемся с совершенно иной ситуацией. В них, ломимо обратимого теплообмена, происходят необратимые процессы: тепловые потери, трение и т. д. Они приводят к увеличению энтропии, или производству энтропии, внутри системы. Увеличение энтропии, которое мы обозначим diS, не может изменять знак при обращении теплообмена с внешним миром. Как все необратимые процессы (например, теплопроводность), производство энтропии всегда происходит в одном и том же направлении. Иначе говоря, величина diS может быть только положительной или обращаться в нуль в отсутствие необратимых процессов. Заметим, что положительность diS—вопрос соглашения: с тем же успехом мы могли бы считать величину diS отрицательной. Важно другое: изменение энтропии монотонно; производство энтропии не может изменять знак во времени.

Выбор обозначений deS и diS призван напоминать читателю, что первый член относится к обмену энергией (по-английски exchange — e) с внешним миром, а второй — к необратимым процессам внутри (по английски inside — i) системы. Таким образом, полное приращение энтропии dS представимо в виде суммы двух членов deS и diS, имеющих различный физический смысл[134].

Чтобы понять одну специфическую особенность такого разложения приращения энтропии в сумму двух членов, полезно применить наши рассуждения к энергии. Обозначим энергию через Е, и пусть dE — приращение энергии за короткий интервал времени dt. Разумеется, ничто не мешает нам представить dE в виде суммы члена deE, описывающего обмен энергией с внешним миром, и члена diE, связанного с «внутренним производством» энергии. Но закон сохранения энергии утверждает, что энергия никогда не «производится», а лишь переносится с одного места на другое. Следовательно, полное приращение энергии dE сводится к deE. С другой стороны, если мы возьмем какую-нибудь несохраняющуюся величину, например количество молекул водорода в некотором сосуде, то такая величина может изменяться и в результате добавления водорода в сосуд, и вследствие химических реакций, протекающих в сосуде. Знак «производства» несохраняющейся величины заранее не определен. В зависимости от обстоятельств мы можем и производить молекулы водорода, и разрушать их, «отдавая» атомы водорода другим химическим соединениям. Специфическая особенность второго начала состоит в том, что член diS, описывающий производство энтропии, всегда положителен. Производство энтропии отражает необратимые изменения, происходящие внутри системы.