Решающий шаг был сделан в 1847 г. Джоулем: он понял, что связи, обнаруженные между выделением или поглощением тепла, электричеством и магнетизмом, протеканием химических реакций, а также биологическими объектами, носят характер «превращения». Идея превращения, опирающаяся на постулат о количественном сохранении «чего-то» при его качественных изменениях, обобщает то, что происходит при механическом движении. Как мы уже знаем, полная энергия сохраняется, в то время как потенциальная энергия переходит, превращается в кинетическую, и наоборот. Джоуль определил общий эквивалент для физико-химических трансформаций, что позволило измерить сохраняющуюся величину. Впоследствии[120] эта величина стала известна как «энергия». Джоуль установил первую эквивалентность, измерив механическую работу, которую необходимо затратить, чтобы поднять температуру данного количества воды на один градус. Так среди ошеломляющего потока новых разнообразных открытий был обнаружен унифицирующий элемент. Сохранение энергии при самых различных преобразованиях, претерпеваемых физическими, химическими и биологическими системами, стало путеводным принципом в исследовании новых процессов.

Неудивительно, что закон сохранения энергии был столь важен для физиков XIX в. Для многих из них он был воплощением единства природы. Это убеждение отчетливо звучит в высказывании Джоуля, выдержанном в традициях английской науки:

«Явления природы, механические, химические или биологические, состоят почти полностью из непрерывного превращения тяготения на расстоянии живой силы [кинетической энергии] в тепло, и наоборот. Тем самым поддерживается порядок во Вселенной: ничто не расстрачивается, ничто не утрачивается, а весь механизм при всей своей сложности работает слаженно и гармонично. И хотя, как в ужасном видении пророка Иезекииля, «казалось, будто колесо находилось в колесе» (Иезек, 1, 16) и все кажется сложным и вовлеченным в хитросплетения почти неисчерпаемого многообразия причин, следствий, превращений и выстраивания в определенной последовательности, тем не менее сохраняется идеальнейший порядок и все бытие послушно непререкаемой воле бога»[121].

Еще более показателен случай немецких ученых Гельмгольца, Майера и Либиха. Все трое принадлежали к культурной традиции, которая отвергла бы взгляды Джоуля с позиций чисто позитивистской практики. В ту пору, когда они совершали свои открытия, ни один из них не был, строго говоря, физиком. Однако их всех интересовала физиология дыхания. Со времен Лавуазье это был своего рода эталон проблемы, в которой функционирование живого существа поддавалось описанию в точных физических и химических терминах, таких, как расход кислорода при горении, выделение тепла и мускульная работа. Эта проблема привлекала физиологов и химиков, чуждых чисто умозрительным построениям романтиков и жаждущих внести свой вклад в экспериментальную науку. Обстоятельства, при которых эти трое ученых пришли к заключению, что дыхание, да и природа в целом подчиняются универсальной «эквивалентности», лежащей в основе всех, больших и малых, явлений, позволяют утверждать, что именно немецкой философской традиции открыватели закона сохранения энергии обязаны своей концепцией, совершенно чуждой позитивисткой позиции: все трое без малейших колебаний пришли к выводу о всеобщем характере закона сохранения энергии, о том, что он пронизывает всю природу до мельчайших кирпичиков мироздания.

Особенно замечательным нам представляется случай Майера[122]. Работая в молодые годы врачом в голландских колониях на Яве, Майер обратил внимание на ярко красный цвет венозной крови у одного из своих пациентов. Это наблюдение привело его к заключению, что жителям жаркого тропического климата требуется меньше кислорода для поддержания нормальной температуры тела, чем в средних широтах, чем и объясняется яркий цвет их крови. Майер продолжил свои исследования и установил баланс между потреблением кислорода, являющимся источником энергии, и потреблением энергии, затрачиваемой на поддержание постоянной температуры тела, несмотря на тепловые потери и мышечную работу. Это была счастливая догадка, так как причиной яркого цвета крови пациента вполне могла быть, например, его «лень». Но Майер не остановился на достигнутом и, продолжив свои рассуждения, пришел к заключению, что баланс потребления кислорода и тепловых потерь — не более чем частное проявление существования какой-то неразрушимой «силы», лежащей в основе всех явлений.

Тенденция видеть в явлениях природы продукты лежащей в их основе реальности, сохраняющей постоянство при всех трансформациях, поразительно напоминает идеи Канта. Влияние Канта отчетливо ощущается и в другой идее, которую разделяли некоторые физиологи: в необходимости различать витализм как философскую спекуляцию и витализм как проблему научной методологии. Для тех физиологов, кто придерживался этой точки зрения, даже если бы существовала «жизненная» сила, лежащая в основе функционирования живых организмов, объект физиологии по своей природе оставался бы чисто физико-химическим. По двум названным выше причинам кантианство, узаконившее ту систематическую форму, которую приняла математическая физика в XVIII в., по праву может считаться одним из источников обновления физики в XIX в.[123]

Гельмгольц совершенно открыто признавал влияние Канта. Для Гельмгольца закон сохранения энергии был лишь воплощением в физике общего априорного требования, на котором зиждется вся наука, а именно постулата о фундаментальной инвариантности, которая кроется за всеми трансформациями, происходящими в природе:

«Цель указанных[124] наук заключается в отыскании законов, благодаря которым отдельные процессы в природе могут быть сведены к общим правилам и могут быть снова выведены из этих последних. Эти правила, к которым относятся, например, законы преломления или отражения света, закон Мариотта и Гей-Люссака для объема газов, являются, очевидно, не чем иным, как общим видовым понятием, которым охватываются все относящиеся сюда явления. Разыскание подобных законов является делом экспериментальной части наших наук; теоретическая часть старается в то же время определить неизвестные причины явлений из их видимых действий; она стремится понять их из закона причинности.

Мы вынуждены были так поступать и имеем на это право благодаря основному закону, по которому всякое изменение в природе должно иметь достаточное основание. Ближайшие причины, которым мы подчиняем естественные явления, могут быть в свою очередь неизменными или изменяющимися. В последнем случае тот же закон принуждает нас искать другие причины этого изменения и так далее до тех пор, пока мы не доходим до последних причин, которые действуют по неизменному закону и которые, следовательно, в каждое время при одинаковых условиях вызывают одно и то же действие. Конечной целью теоретического естествознания и является, таким образом, разыскание последних неизменных причин явлений в природе»[125].

С появлением закона сохранения энергии начала формироваться идея о новом золотом веке физики, который должен был бы в конечном счете привести к наиболее широкому обобщению механики.

Открытие закона сохранения энергии имело далеко идущие культурные последствия. В их число входило и представление об обществе и человеке как о машинах, преобразующих энергию. Но превращение энергии не может быть конечным звеном цепи. Оно отражает пассивные и управляемые аспекты природы, но за ними должен находиться еще один более «активный» уровень. Ницше был одним из тех, кто уловил эхо актов творения и разрушения, выходящих за рамки одного лишь сохранения или превращения. Результаты, являющиеся различиями, могут порождать только различие, например разность температур или уровней потенциальной энергии[126]. Превращение энергии есть всего лишь уничтожение одного различия с одновременным созданием другого. Сила природы оказывается, таким образом, скрытой использованием эквивалентностей. Но существует другой аспект природы, имеющий непосредственное отношение к котлам паровых двигателей, химическим превращениям, жизни и смерти и выходящий за рамки эквивалентностей и сохранения энергии[127]. Говоря об этом аспекте, мы подходим к самому важному вкладу термодинамики в естествознание — понятие необратимости.