Открытие закона теплопроводности имело непреходящее значение. Интересно отметить, что с появлением закона Фурье исторические пути развития физики во Франции и Англии разошлись и к современному этапу французские физики и их английские коллеги следовали различными маршрутами.

Во Франции крушение мечты Лапласа привело к позитивистской классификации науки на иерархически упорядоченные отделы, предложенные Огюстом Контом. Контовская классификация науки была подробно проанализирована Мишелем Серром[117]. В физике сосуществуют две универсалии: тепло и гравитация. Более того, как вынужден признать позднее Конт, эти две универсалии — антагонисты. Гравитация действует на инертную массу, которая подчиняется гравитации, не испытывая ее действия иным путем, кроме как через движение, которое приобретает или передает. Тепло преобразует вещество, определяет изменения состояния и вызывает изменения внутренних свойств. В некотором смысле это было подтверждением протеста химиков-антиньютонианцев и всех тех, кто подчеркивал различие между чисто пространственно-временным поведением, приписываемым массе, и специфической активностью вещества. Именно такое различие и было принято за основу классификации наук, проведенной Контом по общему признаку — порядку, т. е. равновесию. К механическому равновесию сил позитивистская классификация просто добавила понятие теплового равновесия.

С другой стороны, в Британии с появлением теории распространения тепла отнюдь не прекратились попытки объединения всех областей знания, более того, там наметилось новое направление научных исследований — первые шаги в создании теории необратимых процессов.

Закон Фурье, если его применить к изолированному телу с неоднородным распределением температуры, описывает постепенное установление равновесия. Теплопроводность приводит к все большему выравниванию распределения температуры до тех пор, пока распределение во всем теле не станет однородным. Всякий знает, что выравнивание температуры — процесс необратимый. Еще столетие назад Берхаве подчеркивал, что тепло всегда распространяется и выравнивается. Таким образом, наука о сложных явлениях (основанных на взаимодействии большого числа частиц) и временная асимметрия с самого начала оказались взаимосвязанными. Но теплопроводность стала исходным пунктом исследований природы необратимости не раньше, чем была установлена ее связь с понятием «диссипация», рассматриваемым с инженерной точки зрения[118].

Познакомимся несколько подробнее со структурой новой «науки о тепле» в том виде, в каком она сложилась в начале XIX в. Подобно механике, наука о тепле включала в себя и оригинальную концепцию физического объекта, и определение машины, или двигателя, т. е. отождествление причины и следствия в специфическом способе производства механической работы.

При исследовании физических процессов, связанных с теплом, состояние системы необходимо задавать, указывая не положения и скорости ее составных частей (в объеме газа порядка 1 см3 содержится около 1023 молекул), как в случае динамики, а некоторую совокупность макроскопических параметров, таких, как температура, давление, объем и т. д. Кроме того, необходимо учитывать граничные условия, описывающие отношение системы к окружающей среде.

В качестве примера рассмотрим одно из характерных свойств макроскопической системы — ее удельную теплоемкость. Напомним, что удельной теплоемкостью называется количество тепла, которое необходимо сообщить системе, чтобы поднять ее температуру на один градус при постоянном объеме или давлении. Чтобы исследовать удельную теплоемкость (например, при постоянном объеме), систему необходимо привести во взаимодействие с окружающей средой: система должна получить определенное количество тепла, в то время как объем ее поддерживается постоянным, а температура может изменяться.

В более общем случае систему можно подвергнуть механическому воздействию (например, поддерживать постоянство давления или объема с помощью поршня), тепловому воздействию (подводить к системе или отводить от нее некоторое количество тепла) или химическому воздействию (создавать поток реагирующих веществ и продуктов реакции между системой и окружающей средой). Как мы уже упоминали, давление, объем, химический состав и температура являются классическими физико-химическими параметрами, через которые выражаются свойства макроскопических систем. Термодинамику можно определить как науку о корреляции между изменениями этих свойств. Следовательно, термодинамические объекты приводят к новой по сравнению с динамическими объектами точке зрения. Цель теории состоит не в предсказании поведения системы в терминах взаимодействия частиц, а в предсказании реакции системы на изменения, вводимые нами извне.

Механическое устройство (машина) возвращает в виде работы потенциальную энергию, полученную им из внешнего мира. Причина и следствие имеют одинаковую природу и, по крайней мере в идеальном случае, эквивалентны. Действие тепловой машины, в отличие от механического устройства, сопряжено с материальными изменениями состояний, включающими преобразование механических свойств системы, расширением и увеличением объема. Производимую тепловым двигателем работу следует рассматривать как результат подлинного процесса преобразования, а не только передачи движения. Таким образом, тепловая машина — не пассивное устройство. Строго говоря, она производит движение. С этой особенностью тепловой машины связана новая проблема: чтобы восстановить способность системы производить движение, ее необходимо возвратить в начальное состояние. Следовательно, необходим второй процесс, второе изменение состояния, которое компенсировало бы то изменение, которое производит движение. В тепловой машине таким вторым процессом, противоположным первому, является охлаждение системы до начальных значений температуры, давления и объема.

Понятие необратимого процесса было введено в физику в связи с проблемой повышения коэффициента полезного действия (кпд) тепловых машин, т. е. отношения между производимом работой и теплом, которое необходимо подвести к системе, чтобы осуществить два взаимно компенсирующих, процесса. Мы еще вернемся к вопросу о значении закона Фурье для этой проблемы, но сначала опишем ту существенную роль, которую играет закон сохранения энергии.


2. Принцип сохранения энергии

Мы уже отмечали, что в классической динамике энергия занимает центральное место. Гамильтониан (сумму кинетической и потенциальной энергий) можно представить в канонических переменных — координатах и импульсах. В процессе движения значения канонических переменных изменяются, значение же гамильтониана остается постоянным. Динамическое изменение лишь перераспределяет относительную значимость потенциальной и кинетической энергий, оставляя неизменной их сумму.

Начало XIX в. совпало с бурным периодом в истории экспериментальной физики[119]. Нескончаемая вереница открытий показала физикам, что движение способно порождать не только изменения в относительных положениях тел в пространстве. Новые процессы, открытые в лабораториях, постепенно создали сеть, связавшую воедино все новые области физики с другими более традиционными областями, например с механикой. Одну из таких связей неожиданно обнаружил Гальвани. До него были известны только статические электрические заряды. Производя опыты с препаратами лапок лягушек, Гальвани впервые экспериментально наблюдал действие электрического тока. А. Вольта вскоре понял, что «гальванические» сокращения лапок лягушки вызывает проходящий через них электрический ток. В 1800 г. Вольта построил химическую батарею: стало возможным получать электричество с помощью химических реакций. Затем был открыт электролиз: электрический ток позволял изменять химическое сродство и проводить химические реакции. Но электрический ток давал также свет и тепло, а в 1820 г. Эрстед обнаружил, что электрический ток оказывает действие и на магнитную стрелку. В 1822 г. Зеебек показал, что тепло может быть источником электричества, а в 1834 г. им был открыт способ охлаждения вещества с помощью электричества. В 1831 г. Фарадей индуцировал электрический ток с помощью магнитных эффектов. Так постепенно была открыта целая совокупность новых физических эффектов. Естественнонаучный горизонт расширялся с неслыханной быстротой.