Координационное число не является неизменной величиной для данного комплексообразователя, а обусловлено также природой лиганда, в частности, его дентатностью. Лиганды, занимающие во внутренней сфере одно место, называются монодентатными. Существуют лиганды, занимающие во внутренней сфере два или несколько мест. Такие лиганды называются бидентатными или полидентатными. Например:

Изображение к книге Общая химия. Учебное пособие



бидентатный лиганд (оксалат-ион C2O42–)


Изображение к книге Общая химия. Учебное пособие





четырех- или шестидентатный лиганд (двухзарядный анион этилендиаминтетрауксусной кислоты)





5.2 ОСНОВНЫЕ ТИПЫ КОМПЛЕКСНЫХ СОЕДИНЕНИЙ

Аммиакаты – комплексы, в которых лигандами * служат молекулы аммиака, например [Cu(NH3)4]SO4, [Co(NH3)6]Cl3.

Аквакомплексы – лигандами являются молекулы воды: [Co(H2O)6]Cl2, [Al(H2O)6]Cl3.

Ацидокомплексы – лигандами являются анионы. Ацидокомплексы можно представить как продукты сочетания двух солей. Например: PtCl4·2KCl или K2[PtCl6], Fe(CN)2·4KCN или K4[Fe(CN)6] (желтая кровяная соль), Fe(CN)3·3KCN или K3[Fe(CN)6] (красная кровяная соль).

Циклические, или хелатные соединения. Они содержат бидентатный лиганд или лиганд с более высокой дентатностью *, который захватывает центральный ион подобно клешням:

Изображение к книге Общая химия. Учебное пособие

Хелатные соединения отличаются особой прочностью.




5.3 НОМЕНКЛАТУРА КОМПЛЕКСНЫХ СОЕДИНЕНИЙ

В химии под номенклатурой понимают систему правил составления названий соединений. Правила номенклатуры разрабатываются Международным союзом чистой и прикладной химии (IUPAC).

Согласно номенклатуре комплексных соединений, название комплексного аниона начинают с указания состава внутренней сферы *. Во внутренней сфере прежде всего называют анионы, прибавляя к их названию окончание -о. Например: Cl (хлоро-), CN (циано-), OH (гидроксо-) и т.д. Далее называют нейтральные лиганды *. При этом для аммиака используют название “аммин”, для воды – “аква”. Количество лигандов указывают греческими числительными: 2 – ди, 3 – три, 4 – тетра, 5 – пента, 6 – гекса. Затем называют комплексообразователь *, используя для него латинское название и окончание -ат, после чего римскими цифрами в скобках указывают степень окисления * комплексообразователя. После обозначения состава внутренней сферы называют внешнесферные катионы.

Если комплексообразователь входит в состав катиона, то название внутренней сферы составляют так же, как в случае комплексного аниона, но используют русское название комплексообразователя и в скобках указывают степень его окисления. Примеры:

K[Fe(NH3)2(CN)4] – тетрацианодиамминферрат (III) калия

K4[Fe(CN)6] – гексацианоферрат (II) калия

Na2[PtCl6] – гексахлороплатинат (IV) калия

(NH4)2[Pt(OH)2Cl4] – тетрахлородигидроксоплатинат (IV) аммония

[Pt(NH3)4Cl2]Cl2 – хлорид дихлоротетраамминплатины (IV)

[Ag(NH3)2]Cl – хлорид диамминсеребра (I)

Если комплексное соединение является неэлектролитом, т.е. не содержит ионов во внешней сфере, то степень окисления центрального атома не указывается, т.к. она однозначно определяется из условия электронейтральности комплекса. Например:

[RhI3(NH3)3)] – трииодотриамминродий

[Co(NO2)3(H2O)3] – тринитротриаквакобальт

[Cu(CNS)2(NH3)2] – дироданодиамминмедь.




5.4 ПРИРОДА ХИМИЧЕСКОЙ СВЯЗИ В КОМПЛЕКСНЫХ СОЕДИНЕНИЯХ. ВТОРИЧНАЯ ДИССОЦИАЦИЯ КОМПЛЕКСОВ. КОНСТАНТА НЕСТОЙКОСТИ

Согласно методу валентных связей *, образование комплексных соединений * осуществляется за счет донорно-акцепторного * взаимодействия между комплексообразователем * и лигандами *. Обычно центральный атом имеет свободные орбитали *, а лиганды имеют неподеленные электронные пары. В образовании такой координационной связи могут участвовать ns-, np-, nd- или (n–1)d- орбитали, где n – номер внешнего электронного слоя комплексообразователя. Координационное число * определяется гибридизацией * орбиталей центрального атома:

КЧ


2


4


6


Гибридизация


sp


sp3, dsp2


sp3d2, d2sp3



Для примера рассмотрим образование координационных связей в ионе [Zn(NH3)4]2+. Здесь акцептором является ион Zn2+, имеющий вакантные орбитали на четвертом электронном слое и полностью занятый третий электронный слой. Четыре ковалентных связи * образуются с участием одной 4s- и трех 4p-орбиталей, которые перекрываются с орбиталями молекул аммиака (донор), содержащими неподеленные электронные пары:

Изображение к книге Общая химия. Учебное пособие

Валентные орбитали цинка подвергаются sp3-гибридизации, поэтому лиганды (NH3) расположены в вершинах тетраэдра, в центре которого находится ион Zn2+.

Донорно-акцепторная связь в комплексных соединениях является весьма прочной, однако наряду с диссоциацией, в которой отщепляются ионы внешней сферы, в очень незначительной степени разрушается также внутренняя сфера комплекса *:

[Ag(NH3)2]Cl → [Ag(NH3)2]+ + Cl (первичная диссоциация[66])

[Ag(NH3)2]+Изображение к книге Общая химия. Учебное пособие Ag+ + 2 NH3 (вторичная диссоциация[67])

Вторичная диссоциация подчиняется закону действия масс * и характеризуется соответствующей константой равновесия *, которая называется константой нестойкости комплексного иона:

Изображение к книге Общая химия. Учебное пособие

Наиболее устойчивые комплексные соединения имеют наименьшие константы нестойкости. С помощью этих величин можно предсказать течение реакций между комплексными соединениями. Реакция протекает в сторону продуктов с меньшими константами нестойкости. Например, для иона [Ag(NH3)2]+Kнест=6,8·10–8, а для иона аммония NH4+Kнест=5,4·10–10, поэтому под действием кислот аммиакат серебра разрушается с образованием ионов Ag+ и NH4+:

[Ag(NH3)2]+ + 2 H+Изображение к книге Общая химия. Учебное пособие Ag+ + 2 NH4+

Для комплекса [Pt(NH3)4]2+Kнест=5·10–34, поэтому он не разрушается даже в концентрированной соляной кислоте.

Иногда вместо константы нестойкости используют обратную ей величину, называемую константой устойчивости: Kуст=1/Kнест. Значения этих констант можно найти в справочнике.




6 ОКИСЛИТЕЛЬНО–ВОССТАНОВИТЕЛЬНЫЕ РЕАКЦИИ

6.1 ОБЩИЕ ПОНЯТИЯ. СОСТАВЛЕНИЕ УРАВНЕНИЙ ОКИСЛИТЕЛЬНО-ВОССТАНОВИТЕЛЬНЫХ РЕАКЦИЙ

Окислительно-восстановительными называют процессы, которые, в отличие от реакций обмена, сопровождаются смещением электронов от одних свободных или связанных атомов к другим. Поскольку в таких случаях имеет значение не степень смещения, а только число смещенных электронов, то принято условно считать смещение всегда полным и говорить об отдаче или смещении электронов.

Если атом или ион элемента отдает или принимает электроны, то в первом случае степень окисления элемента повышается, и он переходит в окисленную форму (ОФ), а во втором – понижается, и элемент переходит в восстановленную форму (ВФ). Обе формы составляют сопряженную окислительно-восстановительную пару. В каждой окислительно-восстановительной реакции участвуют две сопряженные пары. Одна из них соответствует переходу окислителя, принимающего электроны, в его восстановленную форму (ОФ1→ВФ1), а другая – переходу восстановителя, отдающего электроны, в его окисленную форму (ВФ2→ОФ2), например:

Cl2 + 2 I → 2 Cl + I2

ОФ1 ВФ1 ВФ2 ОФ2

(здесь Cl2 – окислитель, I – восстановитель)

Таким образом, одна и та же реакция всегда является одновременно процессом окисления восстановителя и процессом восстановления окислителя.

Коэффициенты в уравнениях окислительно-восстановительных реакций могут быть найдены методами электронного баланса и электронно-ионного баланса. В первом случае число принятых или отданных электронов определяется по разности степеней окисления элементов в исходном и конечном состояниях. Пример:

HN5+O3 + H2S2– → N2+O + S + H2O

В этой реакции степень окисления меняют два элемента: азот и сера. Уравнения электронного баланса:

N5+ + 3e → N2+

2

S2– – 2e → S0

3

Справа от вертикальной черты ставятся коэффициенты, уравнивающие число принятых и отданных электронов. Найденные коэффициенты переносятся в уравнение реакции:

2 HNO3 + 3 H2S → 2 NO + 3 S + 4 H2O

Уравнения электронного баланса формальны и не дают представления о характере частиц, реально существующих и взаимодействующих в растворах. Этого недостатка лишен метод электронно-ионного баланса, который называется также методом полуреакций. В этом случае во внимание принимаются не отдельные атомы, а частицы, в состав которых они входят:

NO3 + 4H+ + 3e → NO + 2 H2O

2

H2S – 2e → S + 2 H+

3

Доля диссоциированных молекул H2S незначительна[68], поэтому в уравнение подставляется не ион S2–, а молекула H2S. Вначале уравнивается баланс частиц. При этом в кислой среде для уравнивания используются ионы водорода, добавляемые к окисленной форме, и молекулы воды, добавляемые к восстановленной форме. Затем уравнивается баланс зарядов, и справа от черты указываются коэффициенты, уравнивающие количество отданных и принятых электронов. После этого внизу записывается суммарное уравнение с учетом коэффициентов:

NO3 + 4H+ + 3e → NO + 2 H2O

2

H2S – 2e → S + 2 H+

3

2 NO3 + 8 H+ + 3 H2S → 2 NO + 4 H2O + 3 S + 6 H+